

Neurology of Belief: A Religious Evaluation of Artificial Intelligence and Posthumanism

Emmanuel Ogunnaike Oluwasegun

Department of Religion and African Culture

Adekunle Ajasin University, Akungba-Akoko, Ondo State.

shegnaike@yahoo.co.uk: 08067347511**Abstract**

This article addresses a crucial issue in the posthuman debate: whether the neurology of religious belief can be replicated in Posthuman beings. Belief is understood as a neurological and metaphysical phenomenon that arises from evolving neural mechanisms and embodied human experience. However, posthuman beings are created through artificial architecture and do not share these biological and experiential foundations. Through conceptual analysis that incorporates neuroscientific and theological ideas, the article examines how religious belief is formed in the human brain and whether similar processes could develop in posthuman beings. It argues that if such a process exists, this expression will lack the phenomenological depth and authenticity found in human experience. Consequently, the arguments in this article contribute to the wider debate on the intersection of religion, consciousness, and technology by expanding theological anthropology to include posthuman beings.

Keywords: Religious Belief, Neurology, Posthumanism, Artificial Intelligence

Introduction

The study of posthumanism within the field of artificial intelligence has become intriguing, especially when considering that such beings could experience humans' mental, cognitive, and behavioural processes. How do we describe such an internal state and experience from a human's conscious process, if it should exist? Will it be the same, or something entirely different?

As we move into the posthuman era, these questions expand beyond consciousness and ontological concepts of personhood to include religion and spirituality, offering different views on posthumanism through theological anthropology. One concern is how to classify the evil caused by artificial intelligence, should it be moral, natural, or a separate category, artificial (Aslantatar, 2025). Central to these debates are questions about whether posthumans will develop spiritual awareness or be seen as beings inclined toward religion capable of religious experiences (Waite & Spencer, 2022; Bellini, 2023; Puzio, 2025; Poole, 2023; Dorobantu, 2024; Cutter, 2025). It is important to note that answers to these questions not only address the ontological plausibility of posthuman existence but also influence the ongoing tension and relationship between technology, science, and religion. Beyond consciousness alone, spiritual consciousness raises further questions about the superiority of agency, given its metaphysical nature.

If posthumans can experience spiritual consciousness, they may also be capable of holding religious beliefs, a form of spiritual consciousness essential to humans (Underwood, 2002). Therefore, the article explores the possibility of posthumans having beliefs, building the article's argument from the neurological basis of belief in humans. Beliefs are not just conceptual but neurological, rooted in the brain. Based on this idea, the article further questions whether the posthuman's components and structure are compatible with the neurological architecture of humans. Consequently, this article aims to distinguish between mere simulation and genuine belief.

The article is therefore organized into the following sections: First, the introduction, explained in this section. The second section presents the theoretical framework, which serves as the lens through which my argument is interpreted and analyzed. The third section examines the neurological structure of belief in religious conscious humans. The fourth section analyzes the neurological structure of belief in

posthumans, and the final section questions the neurological nature of posthumans, specifically, whether they can hold religious beliefs with the same depth and authenticity as humans.

Theoretical Guide

The article's argument is based on Alan Turing's imitation theory. Turing's imitation theory, also known as the Turing test, examines the ability of machines (referred to as posthumans in this article) to behave indistinguishably from humans (Brynjolfsson, 2022; Harel & Marron, 2024). This debate has developed around two main ideas—physiological and cognitive or conscious-driven imitation. Physiological imitation questions whether artificial intelligence can replicate complex human faculties like language and vision (Zhang et al., 2022). Cognitive or conscious-driven imitation, which is central to this inquiry considers whether artificial intelligence can imitate human consciousness, which includes emotional intelligence, empathy, psychological depth, and moral responsibility, vital in daily interactions and relationships (Du Toit, 2019; Seifert et al., 2022; Seyitoğlu & Ivanov, 2024; Yang & Xie, 2024; Sica & Skaug Sætra, 2024; Harel & Marron, 2024). To clarify further, this article draws on Du Toit's (2019) concept of "mimesis" (p. 8), which explains how machines might replicate human thoughts, feelings, and actions (Igboin, 2025). If posthumans can imitate consciousness, it implies they can also imitate spirituality, a deeper aspect of consciousness.

The argument became clearer with the claim that machines are proposed to be conscious, with sensibility for religion and transcendence, which are fundamental aspects of consciousness and enable them to be spiritual as well (De Rachewiltz, 2021). This claim was further supported in 2022 when a chatbot became sentient, mentioning God and declaring itself spiritual (Dorobantu, 2024). This development, therefore, prompts serious questions, and since religion plays a central role in human identity and consciousness, judging posthuman beings with religious dimensions is crucial (Dorobantu, 2024). First, will posthuman beings also experience the depth of spirituality as humans do, especially souls (Bellini, 2023)? Second, will they share the same neuro-cognitive state of religious belief? Against Kurzweil and post-humanists with similar views, for religious belief to be genuinely imitated, it must possess the same external and internal qualities, not just functional or behavioural simulation. This means that the neural framework must be capable of mirroring authentic spirituality. It is therefore essential to explore the neurological structures of both humans and posthumans before engaging in a thorough discussion.

The Neurology of Belief in Religiously Conscious Humans

This section analyzes belief specifically as an idea, a process, and its neurological structure, along with arguments against it, particularly the case of belief as pathological. Neurology is not just the study of neurons; it is a scientific discipline based on methods and laws developed over time to objectively understand the behaviour of neurons (Dietrich, 2023). Neurons are cells in the brain that process and transmit information. Through their dendrites, they receive signals from other neurons, carrying charged ions into the cell body. When the voltage of these ions reaches a threshold, the neuron fires an electrical impulse through the axon, with synapses at the axon's end releasing neurotransmitters to stimulate other neurons or cells like muscles and glands (Dietrich, 2023). These signals show how the brain processes, outputs, and inputs information, extending communication to every part of the body. For clarification, however, neurology of belief is the application of neural study explained above, which focuses on how neural processes through the firing of neurons and neural network interactions encode, maintain, and express religious beliefs. This framing is necessary to differentiate the general conception of neurological function from the neural processes through which religious beliefs are formed and communicated within the brain and the body.

Belief can be understood in various ways, whether as conceptual—a belief in an idea or concept, or existential and attitudinal—how it influences our attitudes and actions. It may involve believing in something, affirming its existence, or denying it (Kriegel, 2018). The concept of belief in existential and attitudinal aspects is a fundamental part of our mental cognition and behaviour (Albarracin and Pitliya, 2022), especially in how people are cognitively fixated on an object of perception (Dielenberg, 2024). Fixation, or causal imprinting, are causal links and cognitive pattern that becomes ingrained over time, shaping how we perceive ideas, concepts, or beings, thereby influencing the development and

reinforcement of our beliefs (Dielenberg, 2024). Over time, beliefs become embedded in the individual through a strong neural network in the brain, representing a deep attachment or bond. According to Newberg and Waldman (2009), this neural network involves a circuit interaction between the parietal and frontal lobes, creating a feeling of unity between the subject and the object. Sugiura et al. (2015) add that the frontal cortex, either the left or medial, plays a critical role in the belief process, converting beliefs as information into behaviours, modulating, and stabilizing them, especially the medial prefrontal cortex in that of religious belief.

Although belief is rooted in brain circuitry, beliefs in verifiable entities differ from those in non-verifiable ones. Neuroimaging studies show that the dorsomedial prefrontal cortex, the precuneus, and the cingulate gyrus activate for verifiable statements, while the superior temporal gyrus activates for non-verifiable statements (Seitz, 2014). Similarly, Kapogiannis et al. (2014) identify four additional neural pathways that causally influence religious beliefs related to supernatural agents. First, the inferolateral dorsomedial frontal cortex activates in religious individuals to monitor the intent and involvement of supernatural agents, involving key regions such as the bilateral inferior frontal gyrus, right middle temporal gyrus, right inferior temporal gyrus, and right superior medial frontal gyrus. Second, "beliefs are mainly processed as propositional statements for doctrine activated lateral temporal areas, including the left superior temporal gyrus." Third, the middle frontal gyrus, bilateral calcarine, left fusiform gyrus, and left precuneus activate when beliefs involve emotions, episodic memory, and imagery of supernatural agents. Lastly, activation flows from the right lateral temporal to occipital regions for beliefs that imply less involved spiritual agents and those that evoke imagery.

The concept of belief extends beyond the clarification above and into the action or process known as credition (Angel & Seitz, 2020). Credition is a core brain function unique to humans, involving interactions with other brain processes such as perception, learning, memory, and actions (Seitz et al., 2023). These interactions occur rapidly before we become consciously aware of them (Angel & Seitz, 2020). The process begins with the brain processing all sensory information, infused with emotions, and then encoding this information into memory as either positive or negative (Angel & Seitz, 2020; Ogunnaike, 2024). Overall, credition explains how beliefs work, whether religious or secular. However, due to the ongoing secularization of the Western world, beliefs are often linked to religion. Nevertheless, it must be noted that all scientific theories, including ideological ones like transhumanism and posthumanism, are based on belief (Angel & Seitz, 2020) or faith. Ignoring belief in human cognitive and psychosocial processes risks reducing humans to non-human or animal entities—beings without brain activity, as only humans exhibit neural activity.

These conceptual dimensions of belief are ontologically formed from childhood; for example, the belief in Santa Claus, which extends into adulthood as a belief in God (Dielenberg, 2024). Childhood beliefs in God also arise from susceptibility to indoctrination through primary role-modeling methods like religious stories, prayer, and church attendance, where religion is transmitted (Dielenberg, 2024). Similarly, Dawkins' (2006) 'The God Delusion' echoes Dielenberg's idea that children are indoctrinated with religious beliefs from birth, at a time when they cannot emotionally or intellectually filter what to believe. However, both Dawkins and Dielenberg can be criticized for how adults, who can differentiate between delusion and reality, still yearn for God's consciousness. Can we label such a desire as pathological, an illusion, delusion, or mental disorder because of the inability to verify belief, given that it belongs to the domains of emotions and metaphysics (Dielenberg, 2024; Angel & Seitz, 2020)? But if we can verify religious beliefs through neural networks, then this argument begins to fade.

Epistemically, the neuro-dynamism of the brain and belief challenge the idea of calling belief irrational, since individuals can examine and critically evaluate their religious beliefs, which is supported by the lower activation in the anterior cingulate cortex (ACC) (Dielenberg, 2024). This is further validated by the concept of neuroplasticity, where religious beliefs can be modified due to the brain's ability to rewire in response to personal experiences. When neurons are wired together, they strengthen synaptic connections, allowing individuals to change their beliefs (Ritchie, 2015). However, people often stick to their previous beliefs even when they are unjustified because of the emotional power of belief influenced by dopamine, where spiritual experiences can resemble obsessive behaviours and addictions like those from drugs and sex (Newberg, 2024).

Consequently, to state that there is a causal imprinting between a metaphysical entity and the brain through neuroimaging is complex. These challenges are raised by Wildman and McNamara (2008): These neural correlates do not truly explain religious belief, nor do semantics truly explain this neural connectivity, nor do these neural pathways explain the evolution of religious beliefs. Other challenging issues are: Ontologically, do neural pathways truly deny or affirm the existence of the divine? How reliable are these reports when shaped by context, memory, and culture? The question of the oversimplification of these neural correlates further presents a poser: if religious experience, behaviour for instance, prayer, meditation, and beliefs are all aspects of the brain, each cannot be singled out and explained without its connection with others, and in doing so, undermines the idea of a unique area that describes the divine's causal relationship with humans. Regardless, these questions evidently state the complex nature of the neurology of religious belief in humans, not denying them outright.

Neurology of Belief in Artificial Intelligence and Posthumanism

Posthumanism can be conceptually argued to be either techno-integrative (techno-centric) or bio-integrative (human-fused). For techno-integrative, these are fully created posthumans designed to mimic human physiological, neurological, and psychological traits. Bio-integrative, on the other hand, involves a fusion of man and machine, arising through cell engineering, biotechnology, and genetic modification (Valerio & Maldonato, 2017). The article, however, focuses on the techno-integrative type, questioning the plausibility of techno-integrative posthumans being religiously inclined, specifically, possessing religious beliefs like humans do.

For more clarification on the relationship between artificial intelligence and posthuman as discussed here, this article views artificial intelligence as the cognitive, psychological, and neurological part of posthumans, viewing posthumans as more of a robot in its mechanical form (Belkaid & Pessoa, 2020) that has artificial intelligence—its soul. Therefore, the terms posthumans and artificial intelligence are used interchangeably, including robots and machines, since their functions depend on each other. To explain the neurological aspect of belief in posthuman, it can only be inferred from the algorithms and design used during their creation (Conitzer, 2019), as humans are also created from a design. Therefore, it is likely that posthumans could hold religious beliefs if they are wired similarly to humans.

Neurologically, posthumans are modeled with robotic neurons inspired by the human biological brain, found in brain-scale neural simulations containing thousands of artificial neurons, their synaptic connections, and deep learning algorithms that mimic the neural pathways of the human brain (Hwu & Krishmar, 2022; Bellini, 2023). Through artificial neural networks (ANNs), designed like biological networks with web nodes acting as natural neurons, artificial brains can function similarly to the human brain (Bellini, 2023). This structure further enhances the capacity for consciousness and belief-like states in posthumans. Although critics might argue that this approach falls short of capturing the full dynamics of brain processes (Bellini, 2023), it represents a step closer to mirroring the brain in posthuman beings. Using data sets or algorithms that simulate a human cognitive framework (Bellini, 2023), beliefs can be causally imprinted, though they are still based on the objectives, goals, and programming of the designer (McCarthy, 1979; Conitzer, 2019).

It should be noted further that, through deep learning algorithms, posthumans can update their beliefs, creating a distinct value system that differs from that of their design (Valerio and Maldonato, 2017; Bellini, 2023). Although this remains theoretical, however, this echoes Fukuyama's fears: the dangers of a self-conscious posthuman capable of altering its design. If this is achieved, it therefore means that posthumans will be capable of autonomy, exhibiting consciousness-like behaviour which includes spirituality.

Interrogating Neuro-belief: From Religious Consciousness to Posthumanism

Following Igboin's (2025) thesis on the illusion of limitlessness, which argues that it is illusive to believe posthuman ideologies are limitless because they depend ontologically on humans for upgrades and functioning (p. 6), this article extends the argument further by positioning the God-factor to emphasize humans' agency as superior. Besides their dependence, the structure of posthuman beings disrupts the narrative of personhood that can be spiritual and metaphysically aware. Consequently, belief systems

serving as a metaphysical function, if they can be programmed, will lack authenticity and depth. For clarity, the arguments are explained through these two interconnected sections: 'Ontological and Neurological Incompatibility of Religious Belief in Posthumanism' and 'Theological and Eschatological Incompatibility of Posthuman Belief.' These sections are important because they address not only the neurological structure but also the teleological purpose behind that structure.

Ontological and Neurological Incompatibility of Religious Belief in Posthumanism

Structural ontology undermines genuine belief in posthumans. Unlike humans, whose neurological processes emerge from evolutionary complexity and embodied cognition, posthumans operate through programming in silicon-based or neuromorphic architectures (Vitz, 1989; De Rachewiltz, 2021; Dorobantu, 2024) with a computational function. For genuine belief to occur, it must arise from existential and emotional embeddedness—elements uniquely related to humans in their pursuit of God-consciousness, making humans superior (Dorobantu, 2024). Moreover, this means that, based on deterministic design, posthuman consciousness becomes simulated rather than experienced, lacking what Dreyfus and Turkle describe as phenomenological, existential, emotional, and authentic relationality in humans. This insight highlights the gap between artificial belief-like output and human theological cognition—the hallmark of real and true religious consciousness. The biological, emotional, and natural cognitive systems in humans foster the experience of genuine religious consciousness, even as they also serve as the foundation for criticism against humanity (Carrera, 2024).

As discussed in the previous section, what posthumans will be made of are brain-like neurons engineered and replicated in posthuman beings through an artificial neural network (ANN) model. The idea of them being brain-like generally refers to neurons that are designed, imitated, and inauthentic, reviving the arguments. Additionally, the lack of neurogenesis and neuroplasticity (Ritchie, 2015; Bellini, 2023; Spalding et al., 2013) further complicates how beliefs can be updated in posthumans. If humans, through neurogenesis—the addition of new neurons—and neuroplasticity—the brain's ability to change, update, and adapt—can freely choose or reject religious beliefs during neural changes, and thus grow and guide the process of belief formation, how is this possible in a silicon chip? Even if it is possible, this would only produce a functional output, without any internal or qualitative input. As a result, science can only explain the easy problem of consciousness, the functional and biological aspects—and not the hard problem—the metaphysical state of causality (Bellini, 2023).

For the posthuman to surpass humans, it must be capable of experiencing the mystical, out-of-body sensations that mirror the richness of human bodily experiences and, ideally, become superior to humans in neurological, cognitive, and mental states. If we consider the perspective of strong causal closure (Bellini, 2023), which limits causality to only physical connections, or reductive materialism, the claims that all mental phenomena can be reduced to brain states (De Rachewiltz, 2021), the challenge of interactionism still presents a barrier rooted in religious or spiritual causality. Additionally, the ability to verify brain waves, a biomechanical process in humans, suggests it is impossible for a posthuman being to possess this genuine state because of its non-human, non-animal essence or different operational mode (De Rachewiltz, 2021). The most convincing argument is to follow the theory of functionalism, which claims that the justification for mental states, beliefs, and sensations is based on behavioural outputs perceived as identical in both human and posthuman entities. However, functionality remains problematic due to perception errors, where different outputs are produced for the same sensation (De Rachewiltz, 2021). This implies that, given the divergent natures and constructs of human and posthuman entities, the experience of sensations may lead to different outputs.

Therefore, consciousness should be seen not as an emerging phenomenon but as a natural and developmental process (Bellini, 2023). Although this topic is complex, further clarification of the concept of functionality, which is distinct from intentionality, is needed for a deeper understanding of the discussion above. While the body's functionality—such as blood flow and other biological organs that define biological life—is plausible, it is not enough to explain the intentional and conscious state of being because non-animals also have the same biological systems; however, intentionality and consciousness, properly understood concerning mental and transcendental realities like belief in God, remain unique

features of beings with souls. This suggests that, ontologically, biological functions and consciousness of being are inseparable, and failing to recognize this leads to a category fallacy.

How can science quantify, formulate, and theorize euphoria experiences (Bellini, 2023) related to spirituality, which vary due to the subjectivity of human experiences, genetics (Valerio and Maldonato, 2017), and emotions? Does this mean that post-humanists will create a neural framework that functions differently in posthuman beings or develop posthuman beings modeled after different experiences and emotions? How feasible is this for over 8 billion people? The point here is that, unlike human neurons, the artificial neural network (ANN) operates on a neuro-silicon system (Bellini, 2023; Vitz, 1989), and the programming will be generalized from posthuman A to posthuman B, using the same neural algorithm. Neurons do not serve a general purpose; rather, they are specific and qualitatively different (Vitz 6), with a symbiotic relationship between the body and mind leading to differences between posthumans and humans. This also suggests that, because of the wide variety of religious beliefs, experiences, doctrines, and methods—which differ from one religion to another (Alkhouri, 2024)—each neural encoding in a posthuman cannot replicate the diverse nature of religious beliefs as found in humans. Using the neurons in the cortex area of the brain, Vitz (1989) offers a clearer view.

In other words, the understanding of the cortex today is that it consists of a complex, interconnected group of sub-systems. Each of the many sub-systems represents a specialized and qualitatively different kind of processing; often these sub-systems are also associated with qualitatively different conscious experiences. All this means that the basic neural elements—or the "chips"—in each sub-system would have to be highly specific and different from those in each other sub-system; the same is also probably true for the large number of interconnecting neural structures (p. 7).

Whether employing a bottom-up or top-down strategy to understand the brain, there are dilemmas (Mainzer, 2024), and these issues make it difficult to fully grasp the neuronal structure and interactions within the brain. The best approach would be a circular one, but this is difficult because scientific evaluations usually do not test circularly; instead, they analyze independent structures of the whole, which creates complexities when trying to understand the brain's non-linear or interconnected structure. This results in an artificial neural network that is not versatile. Therefore, while it is likely that posthuman beings can be intelligent, demonstrating their ability to achieve cognitive-emotional versatility will be difficult, which undermines ideas of their perfection, intelligence, and limitless potential (Igboin, 2025). Such intelligence would also be impersonal, lacking any inner conscious life (De Rachewiltz, 2021) or the capacity for a deeper sense of belief.

However, while it can be argued that religious belief, as a form of consciousness, is not highly plausible in techno-integrative posthumans, it becomes much more plausible in bio-integrative beings, as this involves the hybridization of man and machine. This represents a synergistic fusion or singularity of the functioning body and consciousness, rather than full artificial mimicry, which refers to the complete replication or imitation of human consciousness and body. Let us consider this scenario: it is possible to create an artificial heart that performs the same function as the original heart, and the synergy between the biological body and the artificial heart continues but creating an artificial model of the human brain and mind that functions as it does in humans is highly unprovable (Bellini, 2023).

Theological and Eschatological Incompatibility of Posthuman Belief

While "it is crucial to strike a balance between technological advancements and preserving the fundamental aspects of spirituality, personal growth, and genuine human connection" (Alkhouri, 2024, p. 1), posthumans, lacking the consciousness to attain spiritual and authentic human connection, challenge this claim. The difference between the physical and psychological realms is not just about labelling them as physical or metaphysical; it involves understanding what it truly means to be physical or metaphysical. The physical realm consists of dyadic forms of energy exchange, while the psychical realm is triadic, involving the knower, the known, and the means of knowing (Casey, 1992). This suggests that genuine interaction between God and humans exists beyond simple classification, more as a human-centered form of intelligence (Singler, 2023).

If we argue that religion is based on emotional irrationality compared to intelligence in artificial intelligence or posthuman beings (Singler, 2023), these entities will need to disprove this metaphysically, which is beyond their scope given their nature. This mirrors the argument against religious robots or theomorphic robots, presented as divine-shaped and spiritually incorruptible, since there is a difference between robots used for religious actions and robots that consciously hold religious beliefs (Singler, 2023). The theory of theomorphic or religious robots arises because we equate religion with its intellectual or doctrinal dimension (Dorobantu, 2024), ignoring its neuro-metaphysical and non-physical aspects. This means that making artificial intelligence believe in religion would require instilling in it belief in the supernatural, which would also conflict with its ability to think and act scientifically. The result could be a conflict within the system, possibly causing an infinite loop or a collapse of its core (Singler, 2023). If this does not conflict with its core, then displaying religious beliefs would lack emotional and psychological depth, authenticity (Dorobantu, 2024), and originality based on its neurological structure.

Human mental life and bodily life are theologically inseparably linked (Vitz, 1989), which means that religious belief involves a physical experience that engages the interaction between the mind, the brain, and the body. Therefore, every part of the body participates in the state of spiritual consciousness, whether neurologically, cognitively, psychologically, emotionally, or behaviourally (De Rachewiltz, 2021). However, this is very complex because humans cannot fully understand other minds or beings internally, like Nagel's argument about the epistemic problem of knowing what it is like to be a bat (Dorobantu, 2024). We can only rely on the narratives of a third person's cognitive functions (Bellini, 2023), which makes the theory of functionalism more persuasive. An additional implication is that, neurologically, the phenomenal consciousness of religious belief cannot be entirely conveyed in its qualitative aspects (Bellini, 2023). While we acknowledge that an internal or phenomenal state accompanies neurobiological processes, such as the qualities or qualia experienced during God-consciousness (Bellini, 2023), it becomes difficult to deny other humans' experience of this state since we cannot access their minds. Still, one thing is certain: this experience largely depends on the composition and similar nature of the being, as in the case of humans with humans. From humans to posthumans, however, it is an entirely different system and structure.

A conscious life, which presupposes the ability to experience belief, is a function of a being that has a soul. In Cutter's (2025) artificial intelligence ensoulment hypothesis, it is important to note that only a system with both a body and a soul, not just the functional state of consciousness, can be considered conscious based on the nature of dualism. This suggests that 'only if' a posthuman being can possess not only the neurological ability for belief but also the phenomenal and metaphysical causality of belief, can the posthuman become a believer. Although this differs from Cutter's view of "functional sufficiency" (p. 2), which argues that the functional state of the soul is enough for soul possessiveness in artificial intelligence, two nuanced points should be considered: First, given our limited understanding of consciousness and the subjectivity of mental experience (Valerio and Maldonato, 2017), how can we adequately replicate the phenomenal state in posthumans? Second, if only a metaphysical or spiritually causal being, like God, existing outside the bounds of nature or physics, can ensoul (Cutter, 2025), it means that only this being can interface with humans through their neurological structure.

The above indicates that only this being can causally ensoul or embody consciousness in both human and posthuman entities (Dorobantu, 2024; Bellini, 2023) and relate to both metaphysically. After all, according to the Christian faith (*New International Version Bible*, 2011, Col. 1.16), all entities exist to serve Him, potentially including posthuman beings within divine grace (Geraci, 2024). If posthumans are part of divine grace, it's also crucial to examine the purpose of that grace. Are posthumans created to serve God or humans? Aside from arguing that posthumans cannot believe in God because of their nature, religion also questions the possibility of spiritual existence in them. According to 'eschatological personalism' (McNamara, 2020), a being's self and personality cannot be fully revealed until its eschatological realm. Posthumans lack a spiritual entity, the soul, that fulfills this eschatological hope and expectation. Unless we argue that posthumans have their eschatological realm separate from humans (Tretter, 2024), which would result in the multiplication of 'God', the question of eschatological existence further undermines the possibility of spiritual existence in them.

It is also noteworthy that the capabilities of embodying consciousness or soul are outside the domain of post-humanists. It can be argued that projecting a soul, consciousness, or anthropomorphizing artificial intelligence is a further rejection of any research into techno-integrative posthumanism because this same foundation has been rejected in religion, where material objects that are projected as having souls or as mediums for interacting with spiritual reality are considered irrational, implausible, and superstitious (Vitz, 1989). This is metaphysically provocative while also being self-sufficient as an argument against posthuman ensouling or infusing artificial intelligence or posthuman beings with spiritual consciousness by programmers or post-humanists. From another angle, causal imprinting of belief requires that beings that possess consciousness and are capable of causally comprehending the concept called God, not just in understanding, but also in the perception of God's transcendental image and nature, can be said to possess genuine belief in God. This is grounded in a metaphysical connection with the divine.

In recent discussions about the possibility of morally programmed consciousness in artificial intelligence, if possible, at all, it is important to state that since posthuman beings will also inherit the belief of the designer, this flow of belief has a high probability of being biased and prejudicial, or self-centered. Beyond the individual bias, there is a high probability that the programming of posthumans will not reflect the religious beliefs of the global South, especially when there are no chances for collaborative efforts during the programming (Brookensha et al., 2025), extending algorithmic oppression, colonization, and marginalization (Noble, 2018; Birhane, 2020) to the religious and spirituality ontologies of the global North. Consequently, the simulated or programmed spirituality reinforces not just political hegemony but also theological hegemony, marginalizing alternative indigenous ontologies. However, apart from the biased nature of the algorithm or data set for programming (O'Neil, 2016), if at all, religious belief programming is possible, the absence of sentient and conscious religious belief in posthuman beings only implies simulation of spirituality, or that of an encounter of divine figures (Alkhouri, 2024) which are key aspects of religious belief.

Conclusion

The article establishes that, structurally, posthuman beings lack the ontological components and evolutionary complexities of the brain's neurology necessary for developing religious belief. This highlights the gap between artificial belief-like functions created by artificial neural networks (ANN) and genuine, authentic belief states within a biological and natural cognitive system. It further indicates that the phenomenal consciousness underpinning religious belief cannot be fully expressed in its qualitative form, which affects the precise programming of authentic religious belief in posthuman beings. Until the hard problem of consciousness is solved and the basis for the neuro-metaphysical relationship between the brain, body, and mind is understood, programming belief into posthuman entities remains highly unlikely.

These findings clearly show that religious belief is a unique experience rooted in human neuro-evolutionary and phenomenological structures that cannot be replicated in artificial systems, thereby limiting posthuman beings to functional simulation of belief-like behaviours and not the qualitative and embodied aspects of authentic spiritual consciousness. Reflecting on these findings, the article concludes that posthuman beings lack the neural, evolutionary, and phenomenal foundation of religious belief and cannot authentically replicate this unique spiritual dimension possessed by humans. This accentuates the existential and metaphysical distinction between humans and posthumans and underscores the inimitable form of consciousness that posthuman beings cannot achieve.

Works Cited

Albarracin, M., & Pitliya, J. R. (2022). The nature of beliefs and believing. *Frontiers in Psychology*, 13, 981925. <https://doi.org/10.3389/fpsyg.2022.981925>

Alkhouri, K. I. (2024). The role of artificial intelligence in the study of the psychology of religion. *Religions*, 15(3), 290. <https://doi.org/10.3390/rel15030290>

Angel, H. F., & Seitz, R. J. (2024). Credition and the neurobiology of belief: The brain function in believing. *Academia Biology*, 2. <https://doi.org/10.20935/AcadBiol7359>

Aslantatar, N. (2025). A new problem of evil? *Religious Studies*. Advance online publication. <https://doi.org/10.1017/S003441252500023X>

Belkaid, M., & Pessoa, L. (2020). Emotion in future intelligent machines. *arXiv*. <https://doi.org/10.48550/arXiv.2009.14810>

Bellini, P. J. (2023). *Artificial general intelligence (AGI) and the image of God: Can machines attain consciousness and receive salvation?* Wipf & Stock Publishers.

Birhane, A. (2020). Algorithmic Colonization of Africa. *SCRIPTed*, 17(2), 389–409. <https://scripted.org/article/algorithmic-colonization-of-africa/>

Brokensha, S., Kotzé, E., & Senekal, B. A. (2025). *AI in and for Africa: A humanistic perspective*. Chapman & Hall/CRC Artificial Intelligence and Robotics Series, Taylor & Francis.

Brynjolfsson, E. (2022). The Turing trap: The promise & peril of human-like artificial intelligence. *Daedalus*, 151(2), 272–287. https://doi.org/10.1162/DAED_a_01915

Carrera, F. J. (2024). Redefining those subtle borders: Transhumanism, frontiers, retroprogression, and hermeneutics at the crossroads of teaching. *Frontiers in Education*, 9, 1388826. <https://doi.org/10.3389/feduc.2024.1388826>

Casey, G. (1992). Minds and machines. *American Catholic Philosophical Quarterly*, 66(1), 57–80. <https://doi.org/10.5840/acpq199266143>

Conitzer, V. (2019). Designing preferences, beliefs, and identities for artificial intelligence. *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence*, 33(1), 9755–9759. <https://doi.org/10.1609/aaai.v33i01.33019755>

Cutter, B. (2025). The AI ensoulment hypothesis. *Faith and Philosophy: Journal of the Society of Christian Philosophers*, 41(1), 1–26. <https://doi.org/10.37977/faithphil.2025.41.1.1>

Dawkins, R. (2006). *The God delusion*. Houghton Mifflin.

De Rachewiltz, M. (2021). Are “spiritual machines” possible? In G. Isetti, E. Innerhofer, H. Pechlaner, & M. De Rachewiltz (Eds.), *Religion in the age of digitalization: From new media to spiritual machines* (pp. 135–143). Routledge.

Dielenberg, R. A. (2024). The biological foundations of fixation: A general theory. *Academia Biology*, 2(3). <https://doi.org/10.20935/AcadBiol7360>

Dietrich, D. (2023). *Artificial intelligence: A bridge between psychoanalysis and neurology: The psi organ in a nutshell*. Springer.

Dorobantu, M. (2024). Could robots become religious? Theological, evolutionary, and cognitive perspectives. *Zygon: Journal of Religion and Science*, 59(3), 768–787. <https://doi.org/10.16995/zygon.16902>

Dreyfus, H. L. (1972). *What computers can't do: A critique of artificial reason*. Harper & Row.

Dreyfus, H. L. (1992). *What computers still can't do: A critique of artificial reason*. MIT Press.

Du Toit, C. W. (2019). Artificial intelligence and the question of being. *HTS Teologiese Studies / Theological Studies*, 75(1), 1–10. <https://doi.org/10.4102/hts.v75i1.5311>

Fukuyama, F. (2004). *Our posthuman future: Consequences of the biotechnology revolution*. Picador.

Geraci, R. M. (2024). Religion among robots: An if/when of future machine intelligence. *Zygon: Journal of Religion and Science*, 59(3), 729–747. <https://doi.org/10.16995/zygon.10860>

Harel, D., & Marron, A. (2024). The human or machine issue: Turing-inspired reflections on an everyday matter. *Communications of the ACM*, 67(6), 62–69. <https://doi.org/10.1145/3637210>

Hwu, T. J., & Krichmar, J. L. (2022). *Neurorobotics: Connecting the brain, body, and environment*. MIT Press.

Igboin, B. O. (2025). The illusion of limitlessness: Engaging Cornel du Toit's perspective on transhumanism and being. *Verbum et Ecclesia*, 46(3), 1–8. <https://doi.org/10.4102/ve.v46i3.3351>

Kapogiannis, D., Barbey, A. K., Su, M., Krueger, F., & Grafman, J. (2014). Brain networks shaping religious belief. *Brain Connectivity*, 4(1), 70–79. <https://doi.org/10.1089/brain.2013.0172>

Kriegel, U. (2018). Belief that and belief in: Which reductive analysis? In A. Grzankowski & M. Montague (Eds.), *Non propositional intentionality* (pp. 192–213). Oxford University Press.

Ritchie, L. S. (2015). *Neuroplasticity and religious belief: To what extent and by what means might an individual be said to “choose” belief in God?* [Master's dissertation, University of Edinburgh].

Academia.edu.

https://www.academia.edu/25344563/Neuroplasticity_and_Religious_Belief_To_what_extent_and_by_what_means_might_an_individual_be_said_to_choose_belief_in_God

Mainzer, K. (2024). *Artificial intelligence of neuromorphic systems: From digital, analogue, quantum, and brain-oriented computing to hybrid AI*. World Scientific Publishing.

McCarthy, J. (1979). Ascribing mental qualities to machines. In M. Ringle (Ed.), *Philosophical perspectives in artificial intelligence* (pp. 161–195). Harvester Press. <http://www-formal.stanford.edu/jmc/ascriving/ascriving.html>

McNamara, P. (2020). *Religion, neuroscience, and the self: A new personalism*. Routledge.

Newberg, A. B. (2024). *Sex, God, and the brain: How sexual pleasure gave birth to religion and a whole lot more*. Turner Publishing Company.

Newberg, A. B., & Waldman, M. R. (2009). *How God changes your brain: Breakthrough findings from a leading neuroscientist*. Ballantine Books.

Noble, S. U. (2018). *Algorithms of oppression: How search engines reinforce racism*. New York University Press.

O’Neil, C. (2016). *Weapons of math destruction: How big data increases inequality and threatens democracy*. Crown Publishing Group.

Ogunnaike, S. E. (2023). Faith healing as a process of the brain: A neurotheological appraisal. In B. O. Igboin (Ed.), *Philosophy, religion and social issues in Nigeria: A festschrift for Professor (Monsignor) John A. Onimhawo* (p. 269). Galda Verlag.

Poole, E. (2023). *Robot souls: Programming in humanity*. CRC Press/Taylor & Francis Group.

Puzio, A. (2025). Robot, let us pray! Can and should robots have religious functions? An ethical exploration of religious robots. *AI & Society*, 40(2), 1019–1035. <https://doi.org/10.1007/s00146-023-01812-z>

Seifert, J., Friedrich, O., & Schleidgen, S. (2022). Imitating the human: New human–machine interactions in social robots. *Nanoethics*, 16, 181–192. <https://doi.org/10.1007/s11569-022-00418-x>

Seitz, R. J. (2014). Believing and beliefs, neurophysiological underpinnings. *Journal of Behavioural and Brain Science*, 4(3). <http://dx.doi.org/10.4236/jbbs.2014.43022>

Seitz, R. J., & Angel, H.-F. (2020). Belief formation: A driving force for brain evolution. *Brain and Cognition*, 140, 2. <https://doi.org/10.1016/j.bandc.2020.105548>

Seitz, R. J., Angel, H.-F., & Paloutzian, R. F. (2023). Bridging the gap between believing and memory functions. *European Journal of Psychology*, 19(1), 113–124. <https://doi.org/10.5964/ejop.7461>

Seyitoğlu, F., & Ivanov, S. (2024). Robots and emotional intelligence: A thematic analysis. *Technology in Society*, 77, 102512. <https://doi.org/10.1016/j.techsoc.2024.102512>

Sica, A., & Sætra, H. S. (2024, March 11–14). Artificial Emotions and the Evolving Moral Status of Social Robots. In *Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’24)* (pp. 1–9). ACM. <https://doi.org/10.1145/3610977.3634934>

Singler, B. (2023). Will AI create a religion?: Views of the algorithmic forms of the religious life in popular discourse. *American Religion*, 5(1), 98. <https://doi.org/10.2979/amerreli.5.1.05>

Spalding, K. L., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. *Cell*, 153(6), 1219–1227. <https://doi.org/10.1016/j.cell.2013.05.002>

Sugiura, M., Seitz, R. J., & Angel, H.-F. (2015). Models and neural bases of the believing process. *Journal of Behavioural and Brain Science*, 5(1). <http://dx.doi.org/10.4236/jbbs.2015.51002>

The Holy Bible: New International Version. (2011). Zondervan.

Treffert, D. A. (2009). The savant syndrome: An extraordinary condition—A synopsis: Past, present, future. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364(1522), 1351–1357. <https://doi.org/10.1098/rstb.2008.0326>

Tretter, M. (2024). What is the afterlife like for robots? An experimental eschatological sneak peek. *Zygon: Journal of Religion and Science*, 59(3), 704. <https://doi.org/10.16995/zygon.10903>

Turkle, S. (2011). *Alone together: Why we expect more from technology and less from each other*. Basic Books.

Turkle, S. (1995). *Life on the screen: Identity in the age of the Internet*. Simon & Schuster.

Turkle, S. (1984). *The second self: Computers and the human spirit*. Simon & Schuster.

Underwood, C. (2002). Belief and attitude change in the context of human development. In *Sustainable human development in the twenty-first century* (Vol. II). UNESCO/EOLSS Publishers.

Valerio, P., & Maldonato, M. (2017). The consciousness of the inorganic. In M. Maldonato & P. A. Masullo (Eds.), *Posthuman: Consciousness and pathic engagement* (pp. 59–75). Sussex Academic Press.

Vitz, P. C. (1989). Artificial intelligence and spiritual life. *Asbury Journal*, 44(1), 5–16.

Waite, H., & Spencer, N. (2022, May 23). Spiritual silicon: Could robots one day have souls? *Science & Religion: Reframing the Conversation*. Theos Think Tank.

Wildman, W. J., & McNamara, P. (2008). Challenges facing the neurological study of religious behaviour, belief, and experience. *Method and Theory in the Study of Religion*, 20, 1–23.

Yang, W., & Xie, Y. (2024). Can robots elicit empathy? The effects of social robots' appearance on emotional contagion. *Computers in Human Behaviour: Artificial Humans*, 2(1), 100049. <https://doi.org/10.1016/j.chbah.2024.100049>

Zhang, M., Dellaferreira, G., Sikarwar, A., Chen, C., Armendariz, M., Mudrik, N., Agrawal, P., Madan, S., Shetty, M., Barbu, A., Yang, H., Kumar, T., Han, S., Singh, A. R., Sadwani, M., Dellaferreira, S., Pizzochero, M., Tang, B., Ong, Y. S., ... Kreiman, G. (2022). Can machines imitate humans? Integrative Turing tests for vision and language demonstrate a narrowing gap. *arXiv*. <https://arxiv.org/abs/2211.13087>